Using Predictive Analytics to Improve Sepsis Outcomes

4/23/2014

Ryan Arnold, MD
Department of Emergency Medicine and Value Institute
Christiana Care Health System, Newark, DE

Susan Niemeier, RN
Chief Nursing Officer, CapsuleTech

Steve Nathan
CEO, Amara Health Analytics
The Sepsis Problem
Ubiquitous, deadly, and costly

- 20,000 deaths per day worldwide
- 800,000+/year contract sepsis in the U.S.; 250K-300K sepsis deaths/year
- $20+ billion annual cost to U.S healthcare providers
- Mortality rate for septic shock exceeds 50%... and, untreated, grows 7.6% per hour
Early identification is critical and difficult

“Evidence unwaveringly suggests that early administration of appropriate antibiotics reduces mortality...” (Surviving Sepsis Campaign)

"Lack of early recognition is a major obstacle to sepsis bundle initiation." (Surviving Sepsis Campaign, 2012 Guidelines)
Basic Analytics Approaches
Benchmarking Candidate EHR Rules

• EHR triggers may be proposed to aid early sepsis identification.

• For example, the traditional 4 SIRS criteria require vitals & labs:
 • Heart rate
 • Respiratory rate
 • Temperature
 • White blood cell count, Bands percentage

• Benchmark prior to deployment to estimate clinical impact
 • Using retrospective EHR data
 • Logging results from a live trial implementation
Case Study: SIRS criteria at a 500-bed hospital

- 500-bed U.S. hospital
- Proposed EHR alert requires at least 2 out of 4 SIRS criteria
- Benchmark to estimate alert volume and clinical workload
- Results of running proposed alert on 4 months of real-time data
 - 13142 patients receive the proposed alert
 - Over 100 alerts per day on average
 - Significant burden: alerts require clinical evaluation for infection & sepsis
 - Most alerts are false positives
- Many hospitals end up ignoring or turning off SIRS alerts due to high workload
 - Though it can yield results with continuous training & feedback:
 UC Davis at HIMSS 2014
Case Study: All 4 SIRS criteria, at a 300-bed hospital

- 300-bed U.S. hospital

- Proposed EHR alert requires all 4 out of 4 SIRS criteria
 - A reaction to the overwhelming volume of alerts from 2 out of 4 criteria

- Benchmark to estimate potential impact on earlier IV antibiotics
 - Look for alert 2+ hours before first standard-of-care antibiotic order
 - For patients who eventually receive a diagnosis of sepsis

- Results of running proposed alert on 6 months of real-time data
 - Only 1 patient in the entire 6 months meets the benchmark criteria
 - The alert is unlikely to help significantly improve early antibiotics
Advanced Analytics Approaches
Obtaining Signal from All Available Data
Knowledge-Based Systems

- Experts
- Guidelines
- Research

Knowledge Base

Rules Engine

Individual Patient Data

CDS Alerts/Messages
Data Mining / Machine Learning

Big Patient Data

Trained Model

Individual Patient Data

CDS Alerts/Messages

Offline

Online
Hybrid

Big Patient Data

Knowledge Base

Trained Model

CDS Alerts/Messages

Individual Patient Data

Experts

Guidelines

Research

Offline

Online
Clinical Vigilance™ for Sepsis
Real-time Decision Support

- Clinical decision support software

- Connects to existing hospital information systems and analyzes all patient data 24/7

- Supports early sepsis detection/prediction

- Provides clinical alerts to smartphone/tablet

- Technology:
 - Machine Learning
 - Natural Language Processing
 - Auto-filtering of physiological signals
Clinical Results

• Alerts precede clinician’s standard of care order of antibiotics by > 12 hours for > 45% of alertable sepsis patients, substantially improving upon results already achieved by conventional sepsis initiatives.

• High alerting accuracy (specificity > 99%). Average 1-3 alerts per clinical shift for a 500 bed hospital. Important for avoiding alarm fatigue.
How Does Amara “define” sepsis?

For triggering alerts:
- The **Clinical Vigilance™ for Sepsis** predictive model reasons over >100 clinical variables

For machine learning & evaluation:
- **Timeliness**: To be considered “early” alerts must precede IV antibiotic orders of physicians unassisted by alerts.
- **Accuracy**: An alert is conservatively considered:
 - *True positive* only if the patient goes on to receive a coded diagnosis of sepsis.
 - *False positive* if the patient is never on IV antibiotics.
Research Challenges and Results
Methodological Challenges in Sepsis Research

Previous sepsis studies have faced methodological limitations:
- Interventional trials (e.g. ProCESS) enroll high-acuity patients.
- Chart review studies skew towards high acuity to limit costs.
- Epidemiological studies face accuracy limits of coded data; particularly problematic for low-acuity patients.

Advanced clinical analytics enables new kinds of sepsis studies:
- Comprehensive data on a large scale with no chart review costs
 - Across the entire sepsis acuity spectrum
- Including detailed real-time clinical data
- Including events identified using natural language processing
Assessing the True Sepsis Burden
[from data presented at ISICEM 2014]

• Total of **216,550 patients** over 36 months from 2 hospitals
• **34,465 patients** got IV antibiotics (suspected infection; sepsis)
• This minority of patients (16%) has a majority (63%) of in-hospital deaths
Automatically Compute Complex Severity Scores

PIRO sepsis staging: Predisposition, Infection, Response, Organ failure

- **P Score**
 - Age
 - < 65: 0
 - 65-80: 1
 - > 80: 2
 - COPD: 1
 - Liver Disease: 2
 - Nursing Home Resident: 2
 - Malignancy: 2
 - Without metastases: 1
 - With metastases: 2
 - Total Possible P Points: 9

- **I Score**
 - Points
 - Pneumonia: 4
 - Skin/soft tissue infection: 0
 - Any other infection: 2
 - Total Possible I Points: 4

- **R Score**
 - Points
 - Respiratory rate > 20: 3
 - Bands > 5%: 1
 - Heart rate > 120: 2
 - Total Possible R Points: 6

- **O Score**
 - Points
 - BUN > 20: 2
 - Resp failure/hypoxemia: 3
 - Lactate > 4.0: 3
 - Systolic Blood Pressure < 70: 4
 - 70-90: 2
 - > 90: 0
 - Platelet Count < 150,000: 2
 - Total Possible O Points: 14

P + I + R + O = PIRO

Mortality vs PIRO score, manually abstracted [Howell et al.]:

Mortality vs PIRO score, computed automatically [our data]:

AMARA HEALTH ANALYTICS

capsule™

CHRISTIANA CARE HEALTH SYSTEM
CV:Sepsis Alert [preliminary data]

- *Clinical Vigilance™ for Sepsis* (CV:Sepsis) screened all patients
- Alerts logged in the background (non-interventional)
- Alert triggered on 3986 of 30479 patients who received IV antibiotics (13%)
- IV Antibiotic patients with CV:Sepsis alert notification had increased mortality and hospital length of stay.

[Bar chart showing comparison between patients with and without alerts]

- **Mortality %**
 - Alert (n=3986)
 - No alert (n=30479)

- **Median Length of Stay (days)**
 - Alert (n=3986)
 - No alert (n=30479)
Antibiotic Timing and Mortality

- Surviving Sepsis, NY Sepsis Regulations, etc. prioritize early antibiotics.
- Mortality & LOS for varying delay from CV:Sepsis alert to IV antibiotics

For 2217 patients with moderate initial severity (PIRO score 5-14)

Earlier antibiotics after CV:Sepsis alert are associated with better outcomes.
Lactate Timing and Mortality
[from data presented at ISICEM 2014]

• **3-hour sepsis bundle** includes: “Measure lactate level”
• Compare mortality for:
 • **Early Lactate** (measured 0-3 hours after CV:Sepsis alert)
 • **Delayed Lactate** (more than 3 hours after CV:Sepsis alert)

- The timing of the assessment, *independent of lactate level*, was prognostic of outcome.
Serial Lactate
[from data presented at ISICEM 2014]

- Surviving Sepsis Bundles & NY Sepsis Regulations Guidance include: “Remeasure lactate if initial lactate was elevated.”
- For patients with initial lactate > 4, compare mortality based on serial lactate measurement.

- Unmeasured serial lactate, and serial lactate ≥ 4, are associated with large mortality burden.
Competitive Analysis

Response
Percentage of CV:Sepsis Performance

- CV:Sepsis
- SIRS
- Vanderbilt
- Michigan
- BJH
- Epic
- Cerner
- Truven
- CSC

0% 20% 40% 60% 80% 100%
Hospital Value: Better Outcome & Lower Costs

- Significantly lower mortality and higher quality of life for survivors

- Example estimated impact at a 500-bed community hospital:
 - 750 fewer sepsis bed-days per year and lower mortality
 - Correspondingly shorter ICU stays
 - Projected direct savings of >$2.5M per year

- >10X annual ROI on purchase of Clinical Vigilance™ for Sepsis
Internal System Architecture

- Sepsis Model
- Data Mining & Machine Learning
- Reasoning Engine
- Clinical NLP
- Multisource Integration
- Medical Ontologies
- Time Series Processing

- ADT
- Labs
- EHR
- CPOE
- Admin
- Devices

Disease Modeling
Patient Timeline
Feature Extraction
Data Acquisition

AMARA HEALTH ANALYTICS
capsule
CHRISTIANA CARE HEALTH SYSTEM
Patient Timeline Data for Research & Reporting
Clinical Results: *Sepsis 2012* data

R.C. Arnold, S.M. Hollenberg, R.P. Dellinger. *Sepsis 2012*

Data from a 300-bed community hospital

<table>
<thead>
<tr>
<th>Time</th>
<th>Median LOS (days)</th>
<th>Mortality (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no alert</td>
<td>2</td>
<td>0.6</td>
</tr>
<tr>
<td>abx order 24-0 hrs prior to alert</td>
<td>4</td>
<td>3.3</td>
</tr>
<tr>
<td>abx order 0-12 hrs after alert</td>
<td>6</td>
<td>8.9</td>
</tr>
<tr>
<td>abx order >12 hrs after alert</td>
<td>8</td>
<td>9.6</td>
</tr>
</tbody>
</table>

Patients experienced better outcomes when treatment was initiated sooner, compared to the time of the *Clinical Vigilance™ for Sepsis* alert.